
Feedback--based Daata Seet Reecommendation for Buuilding
Liinked Daata Appplications

Hélio Rodrigues de Oliveira
Center for Informatics -

Federal University of Pernambuco
Av. Jornalista Anibal Fernandes, s/n -

Cidade Universitária, 50.740-560 -
Recife – PE, Brazil
+55 81 2126.8430

hro@cin.ufpe.br

Alberto Trindade Tavares
Center for Informatics -

Federal University of Pernambuco
Av. Jornalista Anibal Fernandes, s/n -

Cidade Universitária, 50.740-560 -
Recife – PE, Brazil
+55 81 2126.8430

att@cin.ufpe.br

Bernadette Farias Lóscio
Center for Informatics -

Federal University of Pernambuco
Av. Jornalista Anibal Fernandes, s/n -

Cidade Universitária, 50.740-560 -
Recife – PE, Brazil
+55 81 2126.8430

bfl@cin.ufpe.br

ABSTRACT
The huge and growing volume of linked data is increasing the
interest in developing applications on top of such data. One of the
distinguishing features of linked data applications is that the data
could come from any RDF data set available on the Web.
Different from conventional applications, where the data sources
are under control of the application's owner or developer, linked
data applications follow the Semantic Web vision of a world full
of reusable data. Considering a potentially large number of data
sets, one of the primary challenges facing the development of
such solutions is the identification of suitable data sources, i.e.,
data sets that could give a good contribution to the answer of user
queries. In this paper, we discuss this problem and we present a
feedback-based approach to incrementally identify new data sets
for domain-specific linked data application.

Categories and Subject Descriptors
H.4 [Information System Applications]: Miscellaneous;
H.2 [Database Management]: Miscellaneous

General Terms
Algorithms, Management, Measurement, Experimentation.

Keywords
Semantic Web, Linked Data, Feedback.

1. INTRODUCTION
Applications built on top of linked data may offer generic
functionalities as, for example, linked data browsers and search
engines or may offer more domain-specific functionalities by
accessing and integrating data from various linked data sets [3].
One of the primary challenges facing the development of domain-
specific applications is the identification of relevant data sets.
Considering a potentially large number of datasets, to manually
identify suitable ones for a given application may become an
unfeasible task.

In this paper we restrict our attention to applications whose aim is

combining data from different data sets to cover the needs of
specific user communities. We are interested on applications that
follow a query federation pattern, where complex queries may be
posed directly to a fixed set of data sources without creating local
data sources replicas [3]. One of the main challenges of such
approach is that performance problems may arise if the number of
data sets becomes too large. Therefore, the number of data sets
that an application intends to use must be controlled in such a way
that just the more relevant data sets should be considered.

In this paper, we propose a user feedback-based approach to assist
developers to find proper data sources while they are building
domain specific linked data applications. Our approach involves
two main tasks: i) to find a subset of data sets that answers the
application queries and ii) to choose the most important data sets
in this subset. The first phase focuses on filtering the huge volume
of linked data sets available on the Web, while the second one
ranks the candidate data sets obtained in the first phase in order to
identify the best ones. One distinguishing issue of our approach is
that instead of using keyword search to identify candidate data
sets we consider the semantics of SPARQL queries to be posed or
already submitted to the application. Moreover user feedback is
used as a way to assess the relevance of the candidate data sets.

The remainder of this paper is organized as follows. Section 2
presents some examples to motivate the proposed approach.
Section 3 introduces some preliminary definitions used as the
basis for our proposal. Section 4 describes our approach while
Section 5 discusses some initial experiments we performed to test
our approach. Section 6 shows the related works. Section 7
presents conclusions and future work.

2. MOTIVATION
One of the main problems with building applications that make
use of data sources available on the Web consists in finding
relevant data sources. In a general way, a data source is
considered relevant when contributes for answering queries posed
to the application [5]. However, it may happen that a data set may
contribute for answering an application query but the obtained
answer does not meet the user requirements. This may occur
because the data source has generic data and the user wants more
specific data, for example, or the data set has data of poor quality,
i.e., the data may be outdated or incorrect. In such cases, it is not
enough just finding data sets that can answer the application
queries it is also necessary to check if the available data meet the
user requirements.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
I-SEMANTICS 2012, 8th Int. Conf. on Semantic Systems, Sept. 5-7,
2012, Graz, Austria
Copyright 2012 ACM 978-1-4503-1112-0 …$10.00.

49

Suppose, for example, an application, which aims at publishing
information about academic researchers in Computer Science.
One relevant query for such application could be: Return all
researchers who published papers in 2012. Considering that the
application is specific for Computer Science, it is not worth
mentioning the researchers’ area when formulating the query.
Therefore, in this case, any data set that has bibliographic
information about scientific papers could be considered relevant
for its answer. This situation happens because just considering the
application query, as criteria for selecting relevant data sets, is not
enough, once that application queries may be generic and do not
reflect precisely the user requirements. In this case, considering
application queries as the only criteria for finding relevant data
sets will lead to generic information too. Specifically, the
application is interested in data sets as DBLP RKBExplorer1 or
DBLP L3S2 that stores information about Computer Science
bibliography. However, data sets like DBPedia3 and Geonames4

will also be considered relevant once that they have bibliographic
information about the most famous researchers. In a similar way,
PubMed5 and RAE6

In our approach, we use application queries for data sets filtering
and user feedback as way of capturing the relevance of a data set.
Application queries are a good start pointing for identifying
information that users want or need while user feedback given on
the results of application queries may help to identify more
precisely if the information provided by a given data set is
relevant or not. In general terms, if the user considers that the
query results are “good” then the data set may be considered
relevant.

are considered relevant because they have
bibliographic information about medicine researchers and
researchers working in UK institutions, respectively.

Suppose another scenario where an application offers information
about songs in general, which are obtained from linked data sets
available on the Web. Considering that this is a very popular
domain then we suppose the existence of a lot of data sets and,
consequently, there is a big probability of finding data sets of poor
quality. In this context, even when application queries are more
specific it is possible finding data sets that are able of answering
the application queries but the retrieved data is not relevant from
the user perspective.

In both cases we can conclude that considering just application
queries is not sufficient to identify relevant data sources for a
given application. Information about the contents of the data set is
also necessary in order to assure that the data set meets the user
requirements and, therefore, should be considered as a relevant
one. In our approach we consider both criteria: i) a data set filter
criteria: given the increasing number of data sets becoming
available on the Web, there is a need for mechanisms to help
filtering data sets according to a given domain and a specific set
of data requirements, and ii) a data set relevance criteria:
considering that the data sets may have poor quality, i.e., the data
can be incorrect, incomplete or outdated, or may be very general
(or very specific) for a given application, the need arises for
solutions that help to identify relevant data sets according to the
user requirements.

1http://dblp.rkbexplorer.com/
2http://dblp.l3s.de/d2r/
3http://dbpedia.org/
4 http://www.geonames.org/
5http://pubmed.bio2rdf.org
6http://rae2001.rkbexplorer.com/

3. PRELIMINARY DEFINITIONS
In this section, we present some preliminary definitions and
notations that we use throughout the paper.

3.1 SPARQL Query
The main parts of a SPARQL query are [10]: the pattern matching
part, which is composed by features of pattern matching of
graphs; the solution modifiers, which allow modifying the output
of the pattern and the output, which specifies the result form of
the query.

In this work, we are interested on SELECT SPARQL queries
whose final form of the result is a table. The columns of the table
correspond to the values obtained from the matching of the
variables specified in the SELECT clause against the graphs
considered when computing the answer and according to the
pattern described in the WHERE clause.

As an example, let us consider the SPARQL query given in Figure
1 that extracts information from DBPedia about titles of The
Beatles songs. We can identify in such a query: i) the Query
Result Form SELECT ?title, ii) the Basic Graph Pattern (or BGP)
contained within WHERE {?bandWorkdbpprop:artist ?band.}
{?bandWorkfoaf:name ?title.} FILTER (?band =
dbpedia:The_Beatles)} section that describes the patterns the
resulting triples should all match.

Query 1. Return the titles of all The Beatles songs.

SELECT ?title WHERE
{

{ ?bandWorkdbpprop:artist ?band. }
{ ?bandWorkfoaf:name ?title . }
FILTER (?band = dbpedia:The_Beatles)

}
Figure 1. SPARQL query example

3.2 User Feedback
Users may annotate SELECT SPARQL queries results to specify
if a given tuple was expected in the answer table of a query or
not. We call feedback of a query

() = {(1, 1), (2, 2), … , (,)} (3.1)

the set of annotations over the results of , such that an annotation
may be defined by the pair: (,), where is a tuple in the answer
table of and is the feedback value, which can be one of the
following terms [2]: i) true positive (tp): a given instance was
expected in the answer; ii) false positive (fp): a certain instance
was not expected in the answer and iii) false negative (fn): an
expected instance was not retrieved.

Table 1. User Feedback of Query 1

Id Title Feedback
1 "Rock and Roll Music"
2 "Sgt. Pepper's Lonely Hearts Club Band"

3 "What Goes On"

4 "Hello, Goodbye"

5 "Hey Jude"

As an example assume that the evaluation results of Query 1 are
displayed as shown in Table 1. The user examines such results
and provides feedback specifying whether they meet the

50

requirements. For example, the feedback instance given below
specifies that the tuple 1 is a true positive, i.e., meets the user’s
expectations, while tuple 4 is a false negative, i.e., the result was
expected by the user and it was not returned.

(1) = { ("Rock and Roll Music",),

("Sgt.Pepper's Lonely Hearts Club Band",),

("What Goes On",), ("Hello, Goodbye",), ("Hey Jude",)}

Given the feedback annotations, it is possible to obtain values for
precision and recall of the results of a given query . Specifically,

is defined as the ratio of the number of true positives to
the sum of true positives and false positives of (). Similarly,

is the ratio of the number of true positives to the sum of
true positives and false negatives of (). From these we may
calculate value, which is defined as the harmonic mean
of the precision and recall. We will use these values for
calculating the relevance analysis proposed in this paper.

() =
()

() + ()
(3.2)

() =
()

() + ()
(3.3)

() =
2 () ()

() + ()
(3.4)

4. PROPOSED APPROACH
In this work we propose an approach for recommending data sets
for domain-specific linked data applications. The recommendation
is based on a set of queries that reflect the user requirements and
on the user feedback given on the results of such queries. We
assume that during application design, an initial set of
significant application queries is defined and a data set is
chosen to be the initial one. In addition, queries from are
executed over and the user gives feedback on the
corresponding result. It is important to note that the proposed
approach is domain-independent, i.e., it will work with data sets
of any domain.
In this section we present the proposed approach, which consists
of two main phases. The first one searches the Web of Data to
discover new data sets, whereas the second phase ranks the
discovered data sets to identify the most relevant ones.

4.1 Data Sets Filtering
The increasing number of data sets becoming available on the
Web of Data arises the need for mechanisms that help filtering
data sets according to some criteria. In our approach, we are
interested in filtering data sets according to application queries,
i.e. we are interested in finding data sets that may help improving
the results of the most frequently queries posed to the system. The
filtering process is performed by the algorithm presented in
Algorithm 1 and described as follows.

The algorithm receives a set of application queries as input and
gives a list of candidate relevant data sets as output (a set of
SPARQL endpoints). The first step of the algorithm consists in
using the function ExtractRelevantResources in order to identify
the set of relevant query resources, which will guide the search for
candidate data sets. A query resource may be a subject or object
of a triple and consists of a URI. The ExtractRelevantResources
function (Algorithm 2) receives as input the set and returns a
list of the most frequent resources of . Specifically, the resources

extraction consists in retrieving the BGP for each one of the
queries of and for each triple pattern (triplePattern) of a given
BGP, their elements (subject, predicate and object) are visited in
order to build a list of resources and their respective occurrence.
At the end of this process, the top-k resources will be selected as
the most relevant ones.

Algorithm DatasetsFiltering

Input Q: A set of queries

k: Number of relevant resources to be considered during

the crawling

Output DE: A set of SPARQL endpoints of fetched datasets

Begin

1. ()

2. (,)

3. { , , }

4. (,)

5.
()

6.

7.

8. ()

9.

10.

EEnd

Algorithm 1. Data sets Filtering

Algorithm 2. Extraction of Relevant Resources

Once the most relevant resources were identified, the next step
consists of crawling the Web of Data in order to find the set of
candidate data sets. The crawling process considers as seeds the
top-k resources of the list RR (Relevant Resources), which is
composed by URIs that represent relevant resources according to

. A set of predicates (rdfs:seeAlso, owl:sameAs and
owl:equivalentClass) is used during the crawling to obtain new
resources that are similar to the ones of seeds. At the end of the
crawling, a list of new resources is obtained. The next step of the
filtering process consists in building the list of relevant candidate
sets. For this, it is extracted the provenance of the triples obtained
during the crawling process. Using the provenance URI of each
triple stored, it is used the function RetrieveSparqlEndpoint which
extracts the data sets from which the resources of the list were
obtained.

4.2 Data Sets Relevance Analysis
Our proposal for evaluating the relevance of a data set considers
as input a set = { 1, … , } of SPARQL queries and a set of
user feedback annotations = { (1), … , ()} given over
the results of such queries. Queries from reflect the main
application data requirements, while the set of feedback
annotations helps to identify the information that users really want
or need.

Algorithm ExtractRelevantResources

Input Q: A set of queries

Output RR: A sorted list by frequency of query resources

Begin

1.

2.

3. ()

4.

5. ()

6.

7.

8.

9. ()

10.

EEnd

51

In order to refine the relevance analysis, for each query is
assigned a weight value. The of a query , denoted by

(), helps to identify the most important queries for the
application. Consider two queries 1 and 2, with weights (1)

and (2), respectively, if (1) > (2) then query 1 is more
important than 2. In our approach, the weight ()is defined by
the execution frequency of .

In this context, given a set of SPARQL queries = { 1, … , },
a set of weights = { (1), … ()}, a set of feedback
instances = { (1), … , ()} and a candidate data set ,
the relevance calculus of the data set may be defined as follows:

() =
(,) ()

| |

=1

()
| |

=1

(4.1)

Where (,) determines the level of influence of a
data set for a given query . Benefit (,) may be calculated
as defined below:

(,) = (3.5)

Where is the value of obtained from (), such that
() is the set of annotations over the results of when is

evaluated over a set of data sets that does not include the
candidate data set ; and ’ is the value of obtained from

’(), where ’() is the set of annotations over the results of
when is evaluated over a set of data sets that includes the

candidate data set .

In a general way, we can say that a data set has a good influence
over a query if richer query answers are obtained when is
evaluated over a set of data sets, which includes the data set .
Considering the user feedback previously defined, has a good
influence over if () augments or if () reduces. The
algorithm for computing the relevance of a given data set is
presented in Algorithm 3 and described below.

Initially, for each one of the queries of , the following steps
are performed. Using the function CalculateF_measure the
algorithm computes the values of precision, recall and f-measure
based on annotations provided by the user feedback (line 2). The
next step consists of rewriting the query in order to allow its
execution over (lines 3-4). The rewriting of query becomes
necessary because (i) the query was initially submitted over a
data set different from and (ii) the calculus of the of
depends on the feedback given over the results of when is
evaluated considering a set of data sets that includes . It is
important to note that the query rewriting process is out of the
scope of this work. More details about this task can be found in
other works proposed in the literature [1,4,6,8].

Once the rewritten query ’ is obtained and executed over , the
function InferFeedback (Algorithm 4) is used to infer feedback
annotations for the results of the rewritten query. This is done in
order to avoid that the user has to give a new feedback every time
that a new data set is being evaluated. The InferFeedback function
infers feedback annotations for the results of the rewritten query

’. Such inference is based on the feedback annotations previously
given over the results of , in such a way that when a tuple ’ in
the answer table of ’ is equivalent to a tuple in the answer table
of , we have two cases: (i) the feedback value of is true positive
or false positive: in this case, the new feedback value of ’ is the
same of (true positive or false positive, respectively) and (ii) the

feedback value of is false negative: in this case the feedback
value of ’ receives false negative. However, if there is no tuple
that is equivalent to and the feedback value of is false negative
then a new annotation (,) should be included in the set of
inferred feedback annotations. Next, new values of precision,
recall and f-measure are calculated (line 6) and a relevance value
(line 7) is computed based on the values of , ’ and the
of . After doing this for each query , the relevance value of the
data set is calculated and its value (line 11) is returned.
The RelevanceAnalysis algorithm has to be executed for each one
of the data sets identified during the filtering phase. As a result, a
ranking list is created and the top-k most candidate relevant data
sets will be recommended to be included in the application.

Algorithm RelevanceAnalysis

Inputs Q: A set of queries

UF: A set of feedback instances

W: A set of weights

d: a candidate data set

Output Relevance: A new relevance value

Begin

1.

2. _ ()

3. (,)

4. ()

5. () ((),))

6. _ (())

7. + ()

8. + ()

9.

10. /

11.

EEnd

Algorithm 3. Relevance Analysis

Algorithm InferFeedback

Inputs uf(q): A user feedback of query q

Result(q’): A set of tuples obtained over execution of the

query ’
Output uf’(q’): A inferred feedback of query ’

Begin

1.

2.

3. (() =)

4. (() = ’ ’ () =

’ ’)

5. () ‘ ’

6. () ‘ ’

7. + {((), ())}

8.

9. (() = ’ ’)

10. () ‘ ’
11. + {((), ())}

12.

13.

14.

15.
16.

End
Algorithm 4. Feedback Inference

4.3 An example
To illustrate the data sets recommendation process consider the
following example. Suppose an application that plans to offer
information about The Beatles. Let = { 1, 2, 3}, presented in
Figure 2, be the set of initial queries defined during the

52

application design and DBpedia the data set chosen to be the base
data source.

q1: Return the titles of all The Beatles songs
SELECT ?title WHERE{

{ ?bandWorkdbpprop:artist ?band. }
{ ?bandWorkfoaf:name ?title . }
FILTER (?band = dbpedia:The_Beatles)

}
q2: Return the member names and his spouse name
SELECT ?memberName ?memberSpouseName WHERE{

{ dbpedia:The_Beatlesdbpedia-owl:bandMember ?member . }
{ ?member foaf:name ?memberName . }
{ ?memberSpousedbpedia-owl:spouse ?member . }
{ ?memberSpousefoaf:name ?memberSpouseName . }

}
q3: Return the websites of the band The Beatles
SELECT ?memberName ?memberPage WHERE{

{dbpedia:The_Beatlesdbpedia-owl:bandMember ?member
. }

{ ?member foaf:name ?memberName . }
{ ?member foaf:page ?memberPage . }

}
Figure 2. Example queries

Initially, queries from are executed over DBpedia and the
corresponding results are annotated by one of the application
users. Figure 3 presents some of the provided feedback
annotations.

(1) = { ("Rock and Roll Music", tp),

("Sgt.Pepper's Lonely Hearts Club Band", tp),

("What Goes On", tp),("Hello, Goodbye", fn),("Hey Jude", fn)}

(2) = { ("John Lennon", "Yoko Ono", tp),

("Ringo Starr", "Barbara Bach", fn),

("Ringo Starr", "Maureen Cox", fp),

("Paul McCartney", "Linda McCartney", tp) }

(3)

= { ("Ringo Starr", http://dbpedia.org/resource/Ringo_Starr ,

tp), ("MBE", http://dbpedia.org/resource/PaulMcCartney, fp),

("McCartney", http://dbpedia.org/resource/McCartney, fn)}

Figure 3. Feedback annotations for tuples obtained from
DBpedia

Next, based on queries from is executed the data sets filtering
phase. Initially, the most relevant resources are extracted from the
BGP of queries 1, 2 and 3. Once the most relevant resources
were identified, the crawling process starts with the goal of
finding new data sets capable of providing resources similar to the
ones obtained from the BGP. Table 2 presents a list of similar
resources identified during the crawling. The provenance of these
resources is analyzed and then the data sets BBCMusic7 and
MusicBrainz8

The next step consists of analyzing the relevance of the candidate
data sets with respect to the user requirements gathered through
the user feedback. Consider, for example, the data set BBCMusic.
Initially, values for precision, recall and f-measure are calculated
for query 1 considering the feedback annotations given on the
answer obtained from DBpedia (Figure 3). As a result, the value

(1) = 0,7 is obtained. Next, query 1 is rewritten into a

are identified as the candidate relevant data sets.

7www.bbc.co.uk/music
8musicbrainz.org/

query 1’, which is executed over the data set BBCMusic. Then,
tuples in the corresponding answer are annotated according to the
inferred feedback (Figure 4) and new values for precision, recall
and f-measure are calculated for query 1’. As a result, the values

(1) = 0,8 and (BBC, 1) = 1,14 are obtained.
Considering such values and the weight of 1 then it is calculated
the relevance of BBCMusic with respect to 1.

Table 2. List of resources identified during crawling the Web
of Data

http://dbpedia.org/resource/The_Beatles

http://en.wikipedia.org/wiki/Ringo_Starr

http://dbpedia.org/resource/John_Lennon

http://dbpedia.org/resource/Ringo_Starr

http://en.wikipedia.org/wiki/George_Harrison

http://dbpedia.org/resource/Paul_McCartney

(1)

= { ("Rock and Roll Music", tp), ("What Goes On", tp),

("Hello, Goodbye", fn),("Hey Jude", tp)}

(2) = { ("John Lennon", "Yoko Ono," tp),

("Ringo Starr", "Barbara Bach," tp),

("Paul McCartney", "Linda McCartney" , tp)}

(3) = {

("Ringo Starr", http://dbpedia.org/resource/Ringo_Starr ,tp),

("McCartney", http://dbpedia.org/resource/McCartney, fn)}

Figure 4. Inferred feedback annotations for tuples obtained
from BBCMusic

The same procedure is performed for queries 2 and 3. Finally,
based on relevance values of BBCMusic with respect to 1, 2 and

3, it is calculated its relevance with respect to . The final
relevance value is () = 1,08. Table 3 summarizes
the values of f-measure, f’-measure and benefit used in this
calculus.

Table 3. Benefit values for the data set BBCMusic
(1) = 0,7 (1) = 0,8 (, 1) = 1,14

(2) = 0,67 (2) = 0,75 (, 2) = 1,12

(3) = 0,85 (3) = 0,9 (, 3) = 1,05

In our approach the relevance value () [1,). When
0 < 1, we can say that the data set has low or no influence
over the application queries, i.e. data set will be less relevant.
However, when increases, the influence of the data set over the
application queries also increases. Then the higher the value of ,
the better will be the data set for the application considering both
the application queries and the user feedback.

The relevance analysis is also performed for the data set
MusicBrainz. Then the user may choose which data set should be
included in the application.

53

5. IMPLEMENTATION ISSUES AND
EXPERIMENTS
To validate our approach, a prototype has been developed and
some experiments on the domain of bibliographic data were
performed. Specifically, we considered that users were interested
on information about Computer Science bibliography. Our
scenario was composed of five SPARQL queries and DBLP
RKBExplorer was chosen as the initial data set.

Initially, as the result of the data set filtering phase, three
candidate data sets were returned: ACM9, Citeseer10 and Roma11

Figure 5. Benefit values for candidate data sets

It is important to note that for some queries, a data set may be
more relevant than the others. For example, for query 4 Citeseer
has a benefit value better than ACM, while in query 2 is the
opposite. Based on these benefit values a relevance value was
obtained for each one of the three data sets.

The Citeseer data set had the best relevance value (= 1,30). In
other words, this data set has contributed more than the others as
it could contribute for the answering of the great majority of
queries. In the ACM data set, we had a smaller contribution
(= 1,14) because only few queries could be affected by the
inclusion of this source. The last one, the Roma data set had the
worst result (= 0) because almost no query would be affected
by the addition of this source.

Considering these relevance values, we conclude that ACM and
Citeseer data sets are good sources and then should be
recommended as new data sets for the application because they
may improve the quality of queries results. However, the Roma
data set is not good. Its relevance value is low, i.e., it did not
contribute to improve the query results.

We can also observe that the proposed approach selects a data set
as a relevant one based on its relevance for the application instead
of the quality of the data. In this setting, it is possible to avoid the
selection of those data sets with bad quality. However, it is not
possible to assure that the data sets with good data quality will be
selected.

.
For each one of the candidate data sets, the relevance analysis
process was performed. Figure 5 presents the benefit values for
each data set with respect to each one of the five queries.

9http://acm.rkbexplorer.com/
10http://citeseer.rkbexplorer.com/
11http://roma.rkbexplorer.com/

During our experiments, we faced some difficulties regarding the
availability of data sets because some of them do not have an
active and online SPARQL endpoint. Therefore, if the endpoint is
not available then it is not possible to execute queries and
consequently the data set couldn’t be evaluated. Because of this,
several good data sets couldn’t be recommended. Other difficulty
regards the blocking of the crawler access. In our approach,
crawlers are used to obtain relevant resources based on the
application queries in order to help to find out new candidate data
sets. During our experiments, we found out that many data sets
block the access of these crawlers, making it impossible to access
its data.

Moreover, it should be noted that the number of queries is
relevant to the proposed approach, however the quality of the user
feedback is even more important. As a consequence, there will be
situations where a small number of queries with feedback
annotations of good quality will give better results than a larger
set of queries with inconsistent feedback annotations, for example.

6. RELATED WORK
In this section we briefly present some of the research literature
related to our work. The work presented in [9], for example, has
the goal of identifying relevant sources for data linking. They
propose an approach, which utilizes keyword-based search to find
initial candidate sources for data linking, and ontology matching
technologies as a way to assess the relevance of these candidates.
Their approach has two main steps: (i) the searching for
potentially entities in external data sources and (ii) the filtering of
these sources using ontology matching techniques to filter out the
irrelevant ones. They also apply a similarity measure between
classes of the different sources in order to filter out the ones with
low scores. One drawback of this proposal is that, in the filtering
stage, only classes with stronger degree of semantic similarity are
confirmed. In other words, many relevant classes may be filtered
out because they are not considered as exact matches. Our work
differs from this one in the sense that their approach focus on
finding relevant data sets for linking instead of querying.

In the paper [12] the authors propose to find “dirty” sources using
functional dependencies with probabilities (pFD) in the context of
pay-as-you-go data integration systems. During the addition of a
new data source, it is possible to decide if the source is good
enough for the system based on the quality of the functional
dependencies. It is important to mention that this approach just
considers the relational model; in addition it also supposes the
presence of a mediated schema.

In the work [11] is presented an approach to guide the addition of
new sources in keyword search-based data integration systems.
This process builds a search graph from the sources and its
relationships. The search is performed over the graph and the
results are returned in a top-k view with the most relevant answers
to the user. The graph maintenance is made incrementally through
user feedback and when new data sources are discovered the
graph is realigned.

The work proposed in [7] uses the user feedback to rank mappings
in pay-as-you-go systems. The approach uses the concept of VPI
(value of perfect information) as a metric to rank. VPI provides a
means of estimating the benefit to the pay-as-you-go system in
such a way that it is possible to evaluate the correctness of a
candidate matching based on the user feedback. This concept is
based on the utility function that quantifies the quality of query’s
results. Similarly to VPI, in our approach we generate a relevance

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6

q1 q2 q3 q4 q5

Benefit values for each candidate data set

CiteSeer

ACM

Roma

54

value. However, we are interested in rank data sets instead of
ranking mappings.

7. CONCLUSION
Given the high heterogeneity and dynamicity of the data sets
available on the Web of Data, it is possible to have data sets of
poor quality, i.e., the data can be incorrect, incomplete or
outdated. Therefore, having solutions that may help to identify
good data sets to be used as input for a given application becomes
crucial. In this paper, we presented an approach to recommend
new data sets for domain-specific linked data applications.
Among the main distinguishing issues of our approach, we
highlight the use of application queries and feedback given by
users, where application queries help to filter the Web of Data in
order to find candidate relevant data sets, while the user feedback
helps to analyze the relevance of such candidates. Considering
both criteria, it is possible to find out data sets that really meet the
user requirements. It is important to note that the proposed
approach may be used in any application that needs to add new
data sources regardless of the data model in which the application
was designed.

To validate our approach, it was developed a prototype that
performs both data sets filtering and data sets relevance analysis.
The prototype also allows users to provide feedback through a
GUI interface. Some experiments were performed to validate the
behavior of the relevance value calculated according to the
approach proposed in this paper.

As future work, we would highlight some directions:

(i) The improvement of techniques for the data sets filtering
phase: we intend to adopt new data sets filtering techniques
in order to minimize some of the difficulties previously
described. For example, candidate data sets may be identified
through the use of semantic indexes or a repository that
stores information about the data sets may also be built. We
will also investigate the use of VoiD descriptions in order to
help or improve relevant data sets identification.

(ii) The improvement of the user feedback gathering: currently,
we assume that a single user gives the feedback and if there
are two annotations for the same tuple just the last one is
considered the latest. We intend to apply more efficient
techniques for user feedback gathering as well as for
managing the user feedback evolution.

(iii) The improvement of the feedback inference algorithm:
considering that feedback inference was not the main focus
of our work, we applied just a simple technique for obtaining
new feedback from the one already given by the user. We
also intend to improve the quality of the inferred feedback,
and thus improve the quality of the data set recommendation.

(iv) Case study on government data integration: we intend to
build a case study considering open data from the Brazilian
government. We plan to build a service to provide support
for the development of applications that integrates data sets
about the Brazilian government available on the Web,
through the recommendation of relevant data sets.

8. REFERENCES
[1] Adjiman, P., Goasdoué, F., and Rousset, M. 2007. Somerdfs

in the semantic web. Journal on Data Semantics VIII,
Springer-Verlag, Berlin, Heidelberg, 2007, 158–181.

[2] Belhajjame, K., Paton, N. W., Embury, S. M., Fernandes, A.
A. A., Hedeler C. 2010. Feedback-based annotation,
selection and refinement of schema mappings for dataspaces.
In Proceedings of the 13th International Conference on
Extending Database Technology, Lausanne, Switzerland,
2010, 573-584.

[3] Bizer, C., Heath, T., Berners-Lee, T. 2009. Linked data - the
story so far. In Proceedings of the International Journal on
Semantic Web and Information Systems, 5(3), 1-22.

[4] Calvanese, D., Giacomo, G. D., Lembo, D., Lenzerini, M.,
andRosati, R. 2004. What to ask to a peer: Ontology-based
query reformulation. In Proceedings of the 9th International
Conference on the Principles of Knowledge Representation
and Reasoning (KR 2004), 469–478.

[5] Das Sarma, A., Dong, X. L., Halevy, A. 2011. Data
Integration with dependent sources. In Proceedings of the
14th International Conference on Extending Database
Technology, EDBT/ICDT 2011, New York, NY, USA.

[6] Fernandes, D. Y. S. 2009. Using Semantics to Enhance
Query Reformulation in Dynamic Distributed Environments.
PhD thesis, Federal University of Pernambuco.

[7] Jeffery S. R., Franklin M. J., Halevy A. Y. 2007. Soliciting
User Feedback in a Dataspace System. Electrical
Engineering and Computer Sciences University of California
at Berkeley, 2007.

[8] Lopes, F. L. R., Sacramento, E. R., Loscio B. F. 2012. Using
Heterogeneous Mappings for Rewriting SPARQL Queries. In
Proceedings of the 11th International Workshop on Web
Semantics and Information Processing, WebS 2012, Vienna,
Austria, 2012. Accepted for publication.

[9] Nikolov, A., d’Aquin, M. 2011. Identifying Relevant Sources
for Data Linking using a Semantic Web Index. In
Proceedings of the Linked Data on the Web, LDOW 2011,
Hyderabad, India.

[10] Pérez, J., Arenas, M., Gutierrez, C. 2009. Semantics and
complexity of SPARQL. In Proceedings of the ACM
Transactions on Database Systems, TODS 2009, Nova York,
NY, USA, 34(3).

[11] Talukdar, P. P., Ives, Z. G., Pereira, F. 2010. Automatically
incorporating new sources in keyword search-based data
integration, In: Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD
2010, Indianapolis, Indiana, USA, 2010, 387-398.

[12] Wang, D. Z., Dong, X. L., Das Sarma, A., Franklin, M. J.,
Halevy, A. Y. 2009. Functional Dependency Generation and
Applications in Pay-as-you-go Data Integration Systems. In
Proceedings of the 12th International Workshop on the Web
and Databases, WebDB 2009.

55

